Well-conditioned boundary integral equation formulations for the solution of high-frequency electromagnetic scattering problems

نویسندگان

  • Yassine Boubendir
  • Catalin Turc
چکیده

We present several versions of Regularized Combined Field Integral Equation (CFIER) formulations for the solution of three dimensional frequency domain electromagnetic scattering problems with Perfectly Electric Conducting (PEC) boundary conditions. Just as in the Combined Field Integral Equations (CFIE), we seek the scattered fields in the form of a combined magnetic and electric dipole layer potentials that involves a composition of the latter type of boundary layers with regularizing operators. The regularizing operators are of two types: (1) modified versions of electric field integral operators with complex wavenumbers, and (2) principal symbols of those operators in the sense of pseudodifferential operators. We show that the boundary integral operators that enter these CFIER formulations are Fredholm of the second kind, and invertible with bounded inverses in the classical trace spaces of electromagnetic scattering problems. We present a spectral analysis of CFIER operators with regularizing operators that have purely imaginary wavenumbers for spherical geometries—we refer to these operators as Calderón-Ikawa CFIER. Under certain assumptions on the coupling constants and the absolute values of the imaginary wavenumbers of the regularizing operators, we show that the ensuing Calderón-Ikawa CFIER operators are coercive for spherical geometries. These properties allow us to derive wavenumber explicit bounds on the condition numbers of Calderón-Ikawa CFIER operators. When regularizing operators with complex wavenumbers with non-zero real parts are used—we refer to these operators as Calderón-Complex CFIER, we show numerical evidence that those complex wavenumbers can be selected in a manner that leads to CFIER formulations whose condition numbers can be bounded independently of frequency for spherical geometries. In addition, the Calderón-Complex CFIER operators possess excellent spectral properties in the high-frequency regime for both convex and non-convex scatterers. We provide numerical evidence that our solvers based on fast, high-order Nyström discretization of these equations converge in very small numbers of GMRES iterations, and the iteration counts are virtually independent of frequency for several smooth scatterers with slowly varying curvatures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Well conditioned boundary integral equations for two-dimensional sound-hard scattering problems in domains with corners

We present several well-posed, well-conditioned integral equation formulations for the solution of two-dimensional acoustic scattering problems with Neumann boundary conditions in domains with corners. We call these integral equations Direct Regularized Combined Field Integral Equations (DCFIE-R) formulations because (1) they consist of combinations of direct boundary integral equations of the ...

متن کامل

Fast, High-Order, Well-Conditioned Algorithms for the Solution of Three-Dimensional Acoustic and Electromagnetic Scattering Problems

We present a novel computational methodology based on Nyström discretizations to produce fast and very accurate solutions of acoustic and electromagnetic problems in small numbers of Krylov-subspace iterative solvers. At the heart of our approach are integral equation formulations that exhibit excellent spectral properties. In the case of scattering from perfectly conducting structures, and jus...

متن کامل

Mathematical Foundations for the Boundary- Field Equation Methods in Acoustic and Electromagnetic Scattering

The essence of the boundary-field equation method is the reduction of the boundary value problem under consideration to an equivalent nonlocal boundary value problem in a bounded domain by using boundary integral equations. The latter can then be treated by the standard variational method including its numerical approximations. In this paper, various formulations of the nonlocal boundary value ...

متن کامل

A sparse discretisation for integral equation formulations of high frequency scattering problems

We consider two-dimensional scattering problems, formulated as an integral equation defined on the boundary of the scattering obstacle. The oscillatory nature of high-frequency scattering problems necessitates a large number of unknowns inclassical boundary element methods. In addition, the corresponding discretisation matrix of the integral equation is dense. We formulate a boundary element me...

متن کامل

A Sparse Discretization for Integral Equation Formulations of High Frequency Scattering Problems

We consider two-dimensional scattering problems, formulated as an integral equation defined on the boundary of the scattering obstacle. The oscillatory nature of high-frequency scattering problems necessitates a large number of unknowns in classical boundary element methods. In addition, the corresponding discretization matrix of the integral equation is dense. We formulate a boundary element m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers & Mathematics with Applications

دوره 67  شماره 

صفحات  -

تاریخ انتشار 2014